Kippzonen BSRN Scientific Solar Monitoring System Bedienungsanleitung Seite 1

Stöbern Sie online oder laden Sie Bedienungsanleitung nach Messgeräte Kippzonen BSRN Scientific Solar Monitoring System herunter. Kipp&Zonen BSRN Scientific Solar Monitoring System User Manual Benutzerhandbuch

  • Herunterladen
  • Zu meinen Handbüchern hinzufügen
  • Drucken
  • Seite
    / 188
  • Inhaltsverzeichnis
  • LESEZEICHEN
  • Bewertet. / 5. Basierend auf Kundenbewertungen
Seitenansicht 0
WORLD CLIMATE RESEARCH PROGRAMME
BASELINE SURFACE RADIATION NETWORK
(BSRN)
Operations Manual
Version 2.1
L.J.B. McArthur
APRIL 2005
WCRP-121
WMO/TD-No. 1274
W
W
W
O
O
O
R
R
R
L
L
L
D
D
D
M
M
M
E
E
E
T
T
T
E
E
E
O
O
O
R
R
R
O
O
O
L
L
L
O
O
O
G
G
G
I
I
I
C
C
C
A
A
A
L
L
L
O
O
O
R
R
R
G
G
G
A
A
A
N
N
N
I
I
I
Z
Z
Z
A
A
A
T
T
T
I
I
I
O
O
O
N
N
N
INTERNATIONAL
OCEANOGRAPHIC COMMISSION
OF UNESCO
Seitenansicht 0
1 2 3 4 5 6 ... 187 188

Inhaltsverzeichnis

Seite 1

WORLD CLIMATE RESEARCH PROGRAMME BASELINE SURFACE RADIATION NETWORK (BSRN) Operations Manual Version 2

Seite 2

VIIIList of FiguresFigure 1.1. Map of BSRN sites...1Figure 3.1. Diagram indicating appropr

Seite 3

88Annex B Selected InstrumentationB 1. Instrument SpecificationsB 1.1 IntroductionThe information found in this annex is based upon the use of particu

Seite 4

Pyranometers, pyrheliometers and pyrradiometers have been categorized into three groupings depending27upon the quality of the instrument. The instrum

Seite 5

90Pyrheliometer Specification ListSpecification Class of PyrheliometerSecondaryStandardFirst Class Second ClassResponse time: time for 95% response &

Seite 6

91B 2. PyranometersB 2.1 Eppley Laboratory Model PSP PyranometerThe Precision Spectral Pyranometer is designed for the measurement of sun and sky radi

Seite 7

92Zero off-seta)response to 200 W m net + 7 W m-2 -2thermal radiation (ventilated)b)response to 5 K h change ± 2 W m-1 -2in ambient temperatureNon-s

Seite 8

93(bubble half out of the ring)Coincident with base of the instrument.Detector surface and base are coplanar within 0.1°Materials Anodized aluminium c

Seite 9

94Spectral selectivity ± 2%percentage deviation of theproduct of spectral absorptanceand spectral transmittance from the corresponding meanwithin 0.35

Seite 10

95Directional response 5 W m-2for beam radiationQuartz domes Infrasil IIB 2.5 Carter-Scott Middleton EP09 PyranometerThe EP09 sensor has an upwards fa

Seite 11

96Signal output (responsivity) 1.00 mV/W m-2Signal resolution < 1.0 W m-2Zero point ( at 20 C ) ± 1.5 W mo-2Zero point temperature coefficient <

Seite 12

97B 2.7 Eppley Black and White Pyranometer (Model 8-48)The Black and White Pyranometer has a detector consisting of a differential thermopile with the

Seite 13 - Operations Manual

IXFigure D 1.1. The sky functions used in this calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138Figure D 1.

Seite 14

98Linearity < 0.5 % in the range 0.5 to 1330 W m-2Response time < 25 sec. (95%), < 45 sec. (99%)Weight 1.0 kgCable 2-polar shielded, 3 m leng

Seite 15

99B 3. Cavity Radiometers and PyrheliometersB 3.1 Eppley Laboratory HF/AHF Cavity RadiometerThe self-calibrating Absolute Cavity Pyrheliometer has bee

Seite 16

100CONTROL BOX:Size: 7 in. high x 17 in. wide x 16 in. deepW eight: 23 lb (approx)Power requirement: 115 VAC 60 @ or 230 VAC 50 Hz selectableB 3.2 PMO

Seite 17

101Receiver Cavity with inverted cone shaped bottom, coated with specular black paint cavity(absorptance : >.9998).Detector Electrically calibrated

Seite 18

102Linearity ±5% from 0 to 1400 W m-2Response time 1 second (1/e signal)Mechanical vibration tested up to 20 g’s without damageCalibration reference E

Seite 19

103Full opening angle 5° ± 0.2°Slope Angle 1° ± 0.2°Sight accuracy +0.2° from optical axisMaterials Anodised aluminum case, stainless steel screwsWin

Seite 20

104Compact size and light weightWindow is optical sapphire for chemical and scratch resistanceMarine-grade aluminium, hard anodised, for corrosion rsi

Seite 21

105Standby current draw: 0.1 MaStartup settling time: 1.5sTemperature output YSI 44031 thermistor (10kS @ 25 C)oWindow material Optical sapphire, 2mm

Seite 22

106B 4. PyrgeometersB 4.1 Eppley Precision Infrared Radiometer (PIR)This pyrgeometer is a development of the Eppley Precision Spectral Pyranometer. It

Seite 23

107A specially coated silicon dome transmits incoming radiation with wavelength of more than 3 micron, bycutting off shorter wavelengths. The output o

Seite 24

XList of TablesTable 1.1. BSRN Stations ...3Table 1.2. List of site evaluation criteria

Seite 25

108B 5. Sunphotometers and Spectral RadiometersB 5.1 Kipp and Zonen POM-01L Sky RadiometerThe POM-01L Sky Radiometer is a research instrument intended

Seite 26

109Mechanical:Instrument dimension i x L: 89 x 390mmInstrument mass 3 kgControl box dimensions H x L x W: 300 x 250 x 160 mmControl box mass 8.250 kg

Seite 27

110B 5.5 CIMEL Electronique Automatic Sun Tracking Photometer CE 318The CE 318 automatic sun tracking photometer has been designed and realized to be

Seite 28

111Cavity size; CWL tolerance 3-cavity, Ø25 mm; ±2 nmSide-band blocking OD4, UV to 1200 nmDetector type; active area UV si-photodiode; 33 mm2Sensitivi

Seite 29

112Detector tem perature control selection: 30°C, 40°C, 50°C (by jum per on circuit board); stability±0.1 °Cwarm up = 5°C min ; cooling tim e consta

Seite 30

113Annex C The Geometry and Measurement of Diffuse RadiationThis annex provides the report of the BSRN W orking Group on Diffuse Measurements that des

Seite 31

114C 1. Final Report of the Working Group on Solar Diffuse Shading GeometryPrepared by: G. Major and A. OhmuraC 1.1 Terms of reference The Baseline Su

Seite 32

115of integration of the radiation falling on the receiver of the instrument: Ohmura integrates first thedirection of the rays, Major integrates first

Seite 33

116C 2. Annex 1 to Diffuse Geometry WG Report: The effect of diffusometer shading geometryPrepared by G. Major, Z. Nagy and M. Putsay for the BSRN Mee

Seite 34

117Country RmmrmmLmmSlopeangleLimitangleOpeningangleRemarkAustralia I 34.8 10 795 1.79 3.23 2.51 Sky solarAustralia II 34.8 5.64 795 2.10 2.91 2.51 Sk

Seite 35 - Ltd., Redwood, CA, U.S.A

1Figure 1.1. Map of BSRN sites.Baseline Surface Radiation NetworkOperations Manual(Version 2.1)1.0 IntroductionThe determination of a global clim atol

Seite 36

118Figure C 2.1. Penambra functions of diffusometers for 45 degrees solar elevation.Comparing the calculated and measured sky functions it is seen, th

Seite 37

119Figure C 2.2. Compared log measured and calculated circumsolar functions.Letters A, B, C, D, E, F symbolizes different aerosol models.Summarizing t

Seite 38

120Figure C 2.3. Measured sky functions and their approximations by onescalculated for model atmosphere containing rural aerosol and haze particles. D

Seite 39

121Pyrheliometer Direct radiation Circum 1 Circum 2 “Measured”CRO3 770 2.92 7.74 780.7ABS 770 3.05 8.04 781.1KIPP 770 3.11 8.65 781.8NIP 770 3.11 10.9

Seite 40

122Figure C 2.5. Dependence of the HUNI/HUNIII on direct radiation.C 2.4 Reduction of measurements to standard geometryThe empirical formulae in sect

Seite 41

123(4) Using the empirical formulae mentioned in (1) and (2) the diffuse radiation measured by a diffusometercould be corrected to standard geometry.

Seite 42

124C 3. Annex 2 to the Diffuse Geometry WG Report: Optimization of Diffusometers to PyrheliometersPrepared by G. Major and M. Putsay,Hungarian Meteo

Seite 43

125measurement, namely the atmospheric conditions (scattering) and the solar elevation. For a givenpyrheliometer and given circumstances several such

Seite 44

126C 3.2.2 The pyrheliometers and pyranometersFor several pyrheliometers the basic geometric data can be found in (Major 1995). From these, threeins

Seite 45

127the diffusometer has been fitted to the pyrheliometer. Table C 3.4 provides information on the originallength of the diffusometer arm and the optim

Seite 46

2implementation documentation. Whether a site is new or has been in operation for many years,operators and scientists can learn from each other to imp

Seite 47

128Pyranometer Radius of shadingdisk/sphereArm lengthto fit to HFArm lengthto fit to CH-1Arm lengthto fit to NIPCM 11 or 21 25.4 630 603 505EPPLEY PS

Seite 48

129Figure C 4.1. Measured sky functions and their approximations by onescalculated for model atmosphere containing rural aerosol and haze particles to

Seite 49

130Figure C 4.2. Relationship between the geometry ofpyrheliometers and radiance (The relationshipapplies for a diffusometer when the sun is at zenith

Seite 50

131Figure C 4.3a. Relationship between the shadow discand the sensor of a pyranometer.Figure C 4.3b. Detail of the sensor projectionon to the normal p

Seite 51

132Pyrheliometer and Diffuse Geometry ConfigurationsACR or Kipp &Zonen CH1Kipp & Zonen 2APTracker with CMseries pyranometerEppleySDKBSRN with

Seite 52

133The integration of Fr' for the entire sensor surface gives,Then,Likewise for the sun at an arbitrary zenith angle q, we obtain the followings:

Seite 53

134phSince the irradiance on the surface by a pyrheliometer adjusted for the horizontal surface F isthe following relation must be kept,where the sub

Seite 54

135Annex D Pyrheliometers and PointingD 1. On the Pointing Error of PyrheliometersPrepared by G. Major for the BSRN discussion held in Davos, Switzerl

Seite 55

136If the optical axis of the pyrheliometer is not directed to the solar centre, than the angle measured fromthe solar centre (z1) differs from the an

Seite 56

137(2) If the pointing error of a pyrheliometer is larger than its slope angle, the irradiance of thepyrheliometric sensor decreases rapidly with incr

Seite 57

Location of Operating and Planned BSRN StationsSymbol Station Name Sponsor Latitude Longitude Status3CAM Camborne Great Britain 50/ 13' N 5 / 19&

Seite 58

138Figure D 1.1. The sky functions used in this calculation.Figure D 1.2. The contribution of the solar disk to the irradiance of pyrheliometricsensor

Seite 59

139Figure D 1.4. The contribution of the circumsolar sky to the irradiance ofpyrheliometric sensors. The upper 3 curves belong to the case of continen

Seite 60

140D 2. Effect of Clouds on the Pyrheliometric MeasurementsPrepared by G. Major for the BSRN Workshop held in Boulder, Co, 12-16 Aug. 1996D 2.1 Introd

Seite 61

141Using the data of Figure D 2.1where the constant has to be determined to calculate absolute radiance values.D 2.2.2 Cloud side reflectanceFigure

Seite 62

142The cloud radiances have been tuned to the measured ones, while the cloudless parts are the sameas calculated for the atmospheric column containing

Seite 63

143Figure D 2.2. The geometry of cloud edge scattering.Figure D 2.1. Surface Irradiance: the shadow of the model cloud.

Seite 64

144Figure D 2.3. The geometry of cloud side reflectance.

Seite 65

145Figure D 2.4. Measured radiance functions: example for the cloud sidereflectance (upper curve) as well the clearest cases for high and low solarele

Seite 66

146Figure D 2.7. Model radiances for the cloud edge scattering and for the clearsky, mountain aerosol, h=60 degrees.Figure D 2.6. Model radiances of c

Seite 67

147Figure D 2.9. The basic geometrical characteristics of the pyrheliometersinvolved into the calculation.Figure D 2.8. Model radiances for the cloud

Seite 68

4• how will the data be quality controlled and archived?In the BSRN, standards of measurement accuracy and archiving have been clearly defined, butthe

Seite 69

148Figure D 2.10. Cloud effect for the ABS pyrheliometer group.Figure D 2.11. Cloud effect for the Crommelynck 3L pyrheliometer.

Seite 70

149Figure D 2.13. Cloud effect for the NIP pyrheliometer.Figure D 2.12. Cloud effect for the KIPP pyrheliometer.

Seite 71 - Melbourne, Australia

150Annex E Suppliers of Solar Tracking Instruments (Partial Listing)BrusagChapfwiesenstrasse 14CH-8712 StäfaSwitzerlandhttp://www.brusag.ch/Eppley Lab

Seite 72

151Annex F Suppliers of Data Acquisition Systems (Partial Listing)F 1. Data Acquisition TypesAlthough the requirements for observing the basic radiati

Seite 73

152Specification Type 1 Type 2 Type 3Analog-to-digitalconverter typeIntegrating Integrating, Sigma-delta or SuccessiveapproximationSuccessiveapproxima

Seite 74

153Data Translation Inc.100 Locke DriveMarlboro, MA 01752-1192USAhttp://www.datx.com/Type 3EIS Pty LtdP.O. Box 281Roseville, NSW 2069Australiahttp://w

Seite 75

154Annex G Sample log sheetsThe primary reason for keeping a log of the activities about the station is to help in determining thequality of the data.

Seite 76

155Figure G 1. Sample log sheet from the University of Calgary.

Seite 77

156Figure G 2. Sample log sheet from the NREL HBCU solar radiation network.

Seite 78

157Figure G 3. Sample log sheet from the Canadian BSRN site.

Seite 79

5• experts intending to obtain the necessary resources to establish a BSRN station• technologists involved in the construction and operation of a BSRN

Seite 80

158Annex H Common Terms and Formulas used in Uncertainty DeterminationsThe terms and definitions reproduced below are based on those in Guide to the E

Seite 81

159viii. approximations and assumptions incorporated in the measurement method and procedureix. variations in repeated observations of the measurand u

Seite 82 - March 1991, 91 pages

160Notes:a. The value of a quantity may be positive, negative or zero.b. The value of a quantity m ay be expressed in more than one way.c. The values

Seite 83

161Influence quantityQuantity that is not the measurand but that affects the result of the measurement.Result of MeasurementValue attributed to a meas

Seite 84

162Experimental standard deviationFor a series of n measurements of the same measurand, the quantity characterizing the dispersionof the results and

Seite 85

163b. Because only a finite number of measurements can be made, it is possible to determine onlyan estimate of random error.Systematic errorMean that

Seite 86

164H 2. Common FormulasH 2.1 Type A EvaluationIf the number of measurements is , and is the i measurement then: thMeanVarianceStandard DeviationExpe

Seite 87

165Rectangular DistributionIf the semi-range is , then the standard uncertainty, , is given by:The degrees of freedom (v) for a rectangular distribu

Seite 88

166Annex I Solar Position AlgorithmAn algorithm is provided for the calculation of astronomical parameters in QuickBasic. The subroutineis based upon

Seite 89

167Subroutine Solar: Equations based upon the paper of Michalsky (1988) and the approximate equationsgiven in the Astronomical Almanac.Note: Subroutin

Seite 90

6• Extended-Surface Reflectance and In Situ Measurements: development of methods formeasuring surface reflectance over a larger area (e.g., 20 X 20 km

Seite 91

168' MOD(X,Y) = X (MOD Y) = X - INT(X / Y) * Y' The INT function in Fortran is identical to that in QuickBasic;'

Seite 92

169 HC1 = .0001184#' Constant for the calculation of airmass AC1 = -1.253#' Get the current julian date (actually add 2,400,000 for JD).

Seite 93

170' Calculate hour angle in radians between -Pi and Pi. Ha = LMST - Ra IF Ha < -pi THEN Ha = Ha + TwoPi IF Ha > pi THEN Ha = Ha - Tw

Seite 94

171 SolarMn$ = RIGHT$(STR$(SMn), 2) IF ABS(SMn) < Ten THEN SolarMn$ = "0" + RIGHT$(STR$(SMn), 1) SolarSc$ = RIGHT$(STR$(SSc), 2)

Seite 95

172Figure J 1. A BSRN station and the WRMC.Annex J BSRN Data ManagementThis annex contains an outline of the BSRN data management. A comprehensive d

Seite 96

173All data in the BSRN database are consistent. The radiation data however may be afflicted with error,though their quality was controlled by the sta

Seite 97

174IndexAerosol Optical Depth ... III, 53- 56, 58, 108, 114airmass ...

Seite 98

175Instrument Platform ...15, 24, 26, 28, 31Instrumentsabsolute cavity radiometer ...

Seite 99

176Shade... 11, 25, 33-35, 37, 66, 68, 113Signal Cable ...

Seite 100

7upgrading older networks can also benefit from results of the ongoing research conductedspecifically to improve the measurement of solar and terrest

Seite 102

82.0 Sampling Frequency and Accuracy Requirements for BSRN Stations2.1 Sampling Frequency2.1.1 Sampling Frequency of Radiation MeasurementsThe BSRN re

Seite 103

Uncertainty is defined as a parameter associated with the result of a measurement, that characterizes the1dispersion of the values that could reasonab

Seite 104

10BSRN Measurement UncertaintyQuantity 1991* 1997 Target** 2004 Target†1. Direct Solar Irradiance 1% or 2 W m 0.5% or 1.5 W m-2 -22. Diffuse Radiation

Seite 105

Major, G., 1992: Estimation of the error caused by the circumsolar radiation when measuring global4radiation as a sum of direct and diffuse radiatio

Seite 106

Alados-Arboledas, L., J. Vida and J.I. Jiméniz, 1988: Effects of solar radiation on the performance of6pyrgeometers with silicon domes. Jour. Atmos.

Seite 107

Philipona, R., E.G. Dutton, T. Stoffel, J. Michalsky, I.Reda, A. Stifter, P. W endling, N. W ood, S.A. Clough,8E. J. Mlawer, G. Anderson, H.E. Reverco

Seite 108

14better than one second, this time accuracy was relaxed to one second at the BSRN Science andReview Workshop (Boulder, Colorado, USA, 12-16 August, 1

Seite 109

Three locations where further information on time synchronization can be found are: 9(1) NIST: http://www.boulder.nist.gov/timefreq/service/its.htm (

Seite 110 - Weight 1.0 kg

163.0 The BSRN Site3.1 Geographic Location of Site3.1.1 General ConsiderationsIn selecting sites for the Baseline Surface Radiation Network, the obje

Seite 111

17(6) near vehicle parking areas; and(7) where heat is exhausted by vehicles or buildings.Conversely, BSRN stations must be located where facilities e

Seite 112

IAcknowledgementsThe efforts required in creating any document far exceed the capabilities of any one person. This manual hasbeen no exception. I woul

Seite 113

18In locations where a site is presently located, this information should be present with the requiredaccuracy.Global Positioning System (GPS) technol

Seite 114

19The description consists of 11 sections broken down into three main areas: General Description,Site Description and Station Description; m uch of t

Seite 115

20Data in relation surface typeValue Major Surface Type Descriptor1 glacier accumulation area2 glacier ablation area3 iceshelf -4 sea ice -5 water riv

Seite 116

213.3 Instrument ExposureTo obtain data on the radiative field with respect to the surroundings, it is necessary to map thehorizon of the instrument.

Seite 117

22power available. This can be accomplished by obtaining information on the power supply from thelocal power authority.The minimum suggested protectio

Seite 118

Stamper, D.A., 1989: Business Data Communications, 2 Edition, Benjamin/Cummings Publishing Co.nd10Ltd., Redwood, CA, U.S.A.23The Wide Area Network is

Seite 119

24data. While it is impossible to have complete defence against loss, the needfor security must be balanced against the cost of its implementation.Dis

Seite 120

AES Guidlines for Co-operative Climatological Autostations, Version 2.0, Climate Information Branch,11Canadian Climate Service, Atmospheric Environmen

Seite 121

26Figure 3.2. Simple post mount in concrete base.least affects the data. In the case of a wind mast, the mast should be placed where theobstruction al

Seite 122

27Figure 3.3. The support structure used to elevate instruments above thelocal horizon. The structural steel and concrete support structure at theBrat

Seite 123

IIPreface to the First EditionLike all aspects of the Baseline Surface Radiation Network, this manual is in its infancy. The ideas containedwithin may

Seite 124

28A number of dataloggers are capable of withstanding harsh environments, including hot andcold temperatures and high relative humidity. Such data col

Seite 125

Figure 3.4 Generalized schematic of the interface between radiation sensors (RF) and a data acquisition unit showing lightning protection and cablegro

Seite 126

304.0 Installation of Radiation Instruments4.1 GeneralThe installation of pyranometers, pyrheliometers and pyrgeometers is relatively simple (Annex B

Seite 127

31(iv) the directional responsivity of the instrument (cosine and azimuthal response of theinstrument) for pyranometers(v) the deviation of the temper

Seite 128

32Figure 4.1. Ventilator with motor located beside the instrument as used by DeutscherWetterdienst.Spring loaded bolting devices for mounting the inst

Seite 129

33Figure 4.2. Ventilator with the motor locatedbeneath the instrument. Note the extraventilation holes near the top of the housingused to reduce sno

Seite 130

34Figure 4.3. An one-axis tracker used in shading apyranom eter. Note the use of two fine wires to m aintainthe stability of the shading disk. (Develo

Seite 131

35(2) The synchronous motor must:(I) be wired appropriately the electrical power frequency of the location of installation,(ii) be wired to follow the

Seite 132

Major, G., 1992: Estimation of the error caused by the circumsolar radiation when measuring global12radiation as a sum of direct and diffuse radiation

Seite 133

37Pyranometer Radius ofshadingdisk/sphereArm lengthrequired forEppley HFArm lengthrequired forEppley NIPArm lengthrequired forKipp andZonen CH1Eppley

Seite 134

IIIPreface to the Second EditionThe World Climate Research Programme (WCRP) Baseline Surface Radiation Network (BSRN) has beenoperating as a network o

Seite 135

38Figure 4.6. Canadian computer-controlled, friction-drive tracker usedfor measuring direct beam, diffuse and infrared radiation using ashaded pyrgeom

Seite 136

39This method works well if the instrument is on a vertical post attached to the boom extendingfrom the tower. The pyranometer is levelled while the p

Seite 137

40(iii) the deviation of the temperature compensation circuit of the instrument over thetemperature range (-10° to +10° of the local range in tempera

Seite 138

41instructions for each of these devices. A broad overview, however, is important because of the significancesolar tracking plays in the measurement o

Seite 139

42Figure 4.9. Brusag two-axis active tracker. Activetracking is accomplished by balancing the signals fromthe quadrant sensor that is found on the fl

Seite 140

43Types of Solar Pointing Devices Used in the BSRNTracker Type Advantages DisadvantagesSynchronous Motor(Equatorial Mount)Figure 4.8- least expensive-

Seite 141

445.0 Data Acquisition5.1 IntroductionInstalling and maintaining the network data acquisition system(s) is crucial if consistent high qualityradiation

Seite 142

45Of secondary importance in the selection of the DAS is its programmability. While the minimum requirementfor the DAS is to measure a set of signals

Seite 143

46to a fault in the system by performing the same zero test with the resistor attacheddirectly to the input terminal of the unit. Servicing by authori

Seite 144

476.0 Maintenance6.1 IntroductionHigh quality, consistent on-site maintenance is crucial if accurate long-term records are to be obtained.Not only doe

Seite 145

IVTable of ContentsAcknowledgements... IPreface to the First Edition ...

Seite 146

48the radiometer dome by sand or by hyrdometeorites such as hail. If the dome is damaged,it should be replaced with one made of the same optical mater

Seite 147

49(ii) Two-axes passive solar trackerPassive trackers use either internal or external computers to calculate the position ofthe solar disk. Following

Seite 148 - -2 7 2 -1

50- for friction-driven drives check for slippage of the drive disks (see tracker operatingmanual for the proper procedure).- if slippage occurs on ge

Seite 149

516.3 Weekly MaintenanceThe minimum weekly requirements for maintaining a BSRN radiation station are as follows (in additionto the daily maintenance):

Seite 150

526.4.2 Annual maintenanceIdeally, the annual m aintenance should take less than one day to complete if a team of workers ispresent. Although unlikel

Seite 151

Holben, B.N., T.F.Eck, I. Slutsker, D. Tanré, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y.J. Kaufman,13T. Nakajima, F. Lavenu, I Jankowiak, and A

Seite 152

54AOD values obtained from the archive would continue to be based solely on the submitted transmissiondata.7.2 Instrument and Wavelength Specification

Seite 153

55Table 7.1 lists the BSRN wavelengths, maximum displacement from the nominal wavelength and themaximum waveband (Full Width at Half Maximum) in order

Seite 154

56original filters and from the same manufacturing lot. In this manner, the waveband characteristics canbe maintained over longer periods of time. 7.3

Seite 155

57(2) A series of 20 or more ‘Langley’ type calibrations at a high transmission site over a periodof three months or less.(3) An absolute calibration

Seite 156

V4.2.3 Mechanical installation of shaded sensors (pyranometers and pyrgeometers)... 334.3

Seite 157

Forgan, B.W ., 1986: Determination of aerosol optical depth at a sea level station - investigations at Gape16Grimm BAPS. CGBAPS Technical Report 5. Ga

Seite 158

Forgan, B.W., 1988: Sun photometer calibrations by the ratio-Langely method. In Bas elien Atmospheric18Program (Australis) 1986, edited by B.W . Forag

Seite 159

607.4.2.3 Objective AlgorithmThe objective algorithm described by Harrison and Michalsky provides a means to remove observations5that may contaminate

Seite 160

61The use of a standard lamp either as a calibration source or as an irradiance source for use with adetector standard, requires precision measurement

Seite 161

62Devices that use diffusers should also be cleaned daily by gently brushing debris from the diffusermaterial. If the diffuser is extremely dirty, dis

Seite 162

63Field Parameter Description Explanation1 Number of Instruments numeric value of number ofinstruments supplying datamore than one instrument may be s

Seite 163

Philipona, R. C.Frööh, K. Dehne, J. DeLuisi, J. Augustine, E. Dutton, D. Nelson, B. Forgan, P. Novotny, J.19Hickey, S.P. Love, S.B. Bener, B. McArthur

Seite 164

65to guard against performance degradation between international comparisons. One means of monitoringperformance is the use of the reference instrumen

Seite 165

Forgan, B. W ., 1996: A new method for calibrating reference and field pyranometers, Journal of21Atmospheric and Oceanic Technology, 13 638 - 645.66

Seite 166

67Secondly, it alleviates the potential of thermal shock to the instrument which occurs first when theinstrument is exposed to direct beam radiation

Seite 167

VI9.3.2 Procedures for specific fluxes ...739.3.2.1 Direct, diffuse and global ...

Seite 168

68To maintain the traceability of pyrgeometer measurements the following procedure has been established:(1) Each BSRN station requires a minimum of tw

Seite 169

69Figure 8.1. Percentage change in infrared flux due to case thermistor errors.Using these values, the difference between the measured temperature at

Seite 170

For example: International Pyrheliometer Comparisons IPC VII, 24 September to 12 October 1990,22Results and Symposium. Working Report No. 162, Swiss M

Seite 171

Dutton, E.G., J.J. Michalsky, T. Stoffel, B.W . Forgan, J. Hickey, D. W . Nelson, T.L. Alberta and I. Reda,232001: Measurement of broadband diffuse so

Seite 172

72= pyrgeometer body temperature (K)= pyrgeometer dome temperature (K)= the electrical output from the thermopile= a correction factor for infrared ir

Seite 173

73considered in these cases. The first is the normal range of the instrument, for example a pyranometerrange may be -0.1 to 12 mV, while the second is

Seite 174

Gilgen, H. et al: Technical Plan for BSRN Data Management, W orld Radiation Monitoring Centre (WRMC)26Technical Report 1, Version 2.1. World Climate R

Seite 175

75Annex A Site Description DocumentationTemplates for use with the site description documentation that is found in Section 3.2.

Seite 178

VIIC 3. Annex 2 to the Diffuse Geometry WG Report: Optimization of Diffusometers toPyrheliometers ...

Seite 182

81A.1 Example of Site Description DocumentationThe following pages provide sample pages of the Site Description Docum entation for the Bratt’s Lake Ob

Kommentare zu diesen Handbüchern

Keine Kommentare